By Topic

An efficient transient analysis algorithm for mildly nonlinear circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fei Yuan ; Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, Ont., Canada ; Opal, A.

This paper presents a new and efficient transient analysis method for mildly nonlinear circuits. The method is based on Volterra series representation of nonlinear circuits. It characterizes nonlinear circuits using a set of linear circuits called Volterra circuits. The input of the first-order Volterra circuit is identical to that of the nonlinear circuit, whereas that of higher order Volterra circuits is obtained from the response of lower order Volterra circuits. Fourier series interpolation is employed to approximate the input of higher order Volterra circuits. These circuits are analyzed using the sampled-data simulation of linear circuits for computational efficiency and the response of nonlinear circuits is obtained at equally spaced intervals of time. The accuracy of the method is. controlled by the order of Volterra and interpolating Fourier series. Various sources contributing to the error are analyzed. The method has been implemented in a computer program. Numerical results on example circuits demonstrate that the accuracy of the method is comparable to that of linear multistep predictor-corrector algorithms, but with greatly improved speed

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 6 )