By Topic

Physics-based modeling of submicron GaN permeable base transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Camarchia, V. ; Dept. of Electr. & Comput. Eng., Boston Univ., MA, USA ; Bellotti, E. ; Goano, M. ; Ghione, G.

We present the first physics-based nonstationary modeling of a submicron GaN permeable base transistor. Three different transport models are compared: drift-diffusion, energy balance, and ensemble Monte Carlo. Transport parameters and relaxation times used by the carrier transport equations are consistently derived from particle simulation. The current-voltage (I-V) characteristics predicted with the energy balance model are in good agreement with those obtained from direct Monte Carlo device simulation. On the other hand, the drift-diffusion approach appears to be inadequate for the device under study, even if improved high-field mobility models are adopted.

Published in:

Electron Device Letters, IEEE  (Volume:23 ,  Issue: 6 )