By Topic

Direct current glow discharges in atmospheric air

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohamed, A.-A.H. ; Phys. Electron. Res. Inst., Old Dominion Univ., Norfolk, VA, USA ; Block, R. ; Schoenbach, K.H.

A microhollow cathode discharge was used as plasma cathode to sustain a stable direct current glow discharge in atmospheric pressure air. The length of the glow discharge column was varied from 1 mm to 2 cm, with the sustaining voltage increasing linearly with length. For glow discharges with currents on the order of 10 mA, the electron density in the air plasmas exceeded 1011 cm-3, with highest values of almost 1013 cm-3 close to the plasma cathode. When two 8.5-mA discharges were operated in parallel, at a distance of 0.4 cm, the discharge plasmas were found to merge for electrode gaps exceeding 0.5 cm, an effect that can be used to generate large volume, homogenous air plasmas

Published in:

Plasma Science, IEEE Transactions on  (Volume:30 ,  Issue: 1 )