By Topic

HiPER: a compact narrow channel router with hop-by-hop error correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. May ; Syst. Archit. Lab., Motorola Labs., Schaumburg, IL, USA ; S. Bunchua ; D. S. Wills

Multiprocessor architectures demand efficient interprocessor communication to maximize system utilization and performance. To meet future demands, these interconnects must communicate at significantly higher speeds while operating more efficiently to meet system size, weight, power, and energy requirements. As high-performance parallel computing architectures make their way into portable systems, compact, efficient, and error-tolerant computing and communication mechanisms will be required. This paper presents the High-Performance Efficient Router (HiPER), an efficient multidimensional router supporting high-throughput error-corrected communication channels. HiPER is a proof-of-concept vehicle for efficient implementations of routing, switching, and error control mechanisms. It combines mad postman (bit-pipelined) switching with dimension-order routing, producing a low-latency routing router that is less sensitive to message distance than a word parallel crossbar router. To maintain robust communication as link speeds increase and link power budgets decrease, HiPER employs flit-level hop-by-hop retransmission of erroneous flits, which provides builtin error control at the network level. Data presented on the implemented bit serial version of HiPER offer insight into future router designs with channel sizes between bit-serial and word-wide

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:13 ,  Issue: 5 )