By Topic

Quantum rate-distortion theory for memoryless sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Devetak, I. ; Dept. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Berger, T.

We formulate quantum rate-distortion theory in the most general setting where classical side information is included in the tradeoff. Using a natural distortion measure based on entanglement fidelity and specializing to the case of an unrestricted classical side channel, we find the exact quantum rate-distortion function for a source of isotropic qubits. An upper bound we believe to be exact is found in the case of biased sources. We establish that in this scenario optimal rate-distortion codes produce no entropy exchange with the environment of any individual qubit

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 6 )