By Topic

Design and testing of monolithic active pixel sensors for charged particle tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

A monolithic active pixel sensor (MAPS) for charged particle tracking based on a novel detector structure has been proposed, simulated, fabricated and tested. This detector is inseparable from the readout electronics, since both of them are integrated on the same, low-resistivity silicon wafer standard for a CMOS process. The individual pixel is comprised of only three MOS transistors and a photodiode collecting the charge created in the thin undepleted epitaxial layer. This approach provides a low cost, high resolution and thin device with the whole detector area sensitive to radiation (100% fill factor). Detailed device simulations using the ISE-TCAD package have been carried out in order to study the charge. collection mechanism and to validate the proposed idea. In order to demonstrate viability of the technique, two prototype chips were successively fabricated using 0.6 μm and 0.35 μm CMOS processes. Both chips have been fully characterized. The pixel conversion gain has been calibrated using a 55Fe source and prototypes have been exposed to a 120 GeV/c pion beam at CERN. The final test results with emphasis on the first prototype are reviewed. The experimental data is preceded by general design ideas and simulation results

Published in:

Nuclear Science, IEEE Transactions on  (Volume:49 ,  Issue: 2 )