By Topic

Hardware support for real-time embedded multiprocessor system-on-a-chip memory management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shalan, M. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Mooney, V.J.

The aggressive evolution of the semiconductor industry smaller process geometries, higher densities, and greater chip complexity - has provided design engineers the means to create complex, high-performance Systems-on-a-Chip (SoC) designs. Such SoC designs typically have more than one processor and huge memory, all on the same chip. Dealing with the global onchip memory allocation/de-allocation in a dynamic yet deterministic way is an important issue for the upcoming billion transistor multiprocessor SoC designs. To achieve this, we propose a memory management hierarchy we call Two-Level Memory Management. To implement this memory management scheme which presents a paradigm shift in the way designers look at on-chip dynamic memory allocation - we present a System-on-a-Chip Dynamic Memory Management Unit (SoCDMMU) for allocation of the global on-chip memory, which we refer to as Level Two memory management (Level One is the operating system management of memory allocated to a particular on-chip Processing Element). In this way, processing elements (heterogeneous or non-heterogeneous hardware or software) in an SoC can request and be granted portions of the global memory in a fast and deterministic time (for an example of a four processing element SoC, the dynamic memory allocation of the global onchip memory takes sixteen cycles per allocation/deallocation in the worst case). In this paper, we show how to modify an existing Real-Time Operating System (RTOS) to support the new proposed SoCDMMU. Our example shows a multiprocessor SoC that utilizes the SoCDMMU has 440% overall speedup of the application transition time over fully shared memory that does not utilize the SoCDMMU

Published in:

Hardware/Software Codesign, 2002. CODES 2002. Proceedings of the Tenth International Symposium on

Date of Conference:

2002