By Topic

Tarantula: a vector extension to the alpha architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Espasa, R. ; Compaq-UPC Microprocessor Lab., Univ. Politecnica de Catalunya, Barcelona, Spain ; Ardanaz, F. ; Emer, J. ; Felix, S.
more authors

Tarantula is an aggressive floating point machine targeted at technical, scientific and bioinformatics workloads, originally planned as a follow-on candidate to the EV8 processor. Tarantula adds to the EV8 core a vector unit capable of 32 double-precision flops per cycle. The vector unit fetches data directly from a 16 MByte second level cache with a peak bandwidth of sixty four 64-bit values per cycle. The whole chip is backed by a memory controller capable of delivering over 64 GBytes/s of raw bandwidth. Tarantula extends the Alpha ISA with new vector instructions that operate on new architectural state. Salient features of the architecture and implementation are: (1) it fully integrates into a virtual-memory cache-coherent system without changes to its coherency protocol, (2) provides high bandwidth for non-unit stride memory accesses, (3) supports gather/scatter instructions efficiently, (4) fully integrates with the EV8 core with a narrow, streamlined interface, rather than acting as a co-processor (5) can achieve a peak of 104 operations per cycle, and (6) achieves excellent "real-computation" per transistor and per watt ratios. Our detailed simulations show that Tarantula achieves an average speedup of 5X over EV8, out of a peak speedup in terms of flops of 8X. Furthermore, performance on gather/scatter intensive benchmarks such as Radix Sort is also remarkable: a speedup of almost 3X over EV8 and 15 sustained operations per cycle. Several benchmarks exceed 20 operations per cycle

Published in:

Computer Architecture, 2002. Proceedings. 29th Annual International Symposium on

Date of Conference: