Cart (Loading....) | Create Account
Close category search window
 

A neural-network-based space-vector PWM controller for a three-level voltage-fed inverter induction motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mondal, S.K. ; Dept. of Electr. Eng., Tennessee Univ., Knoxville, TN, USA ; Pinto, J.O.P. ; Bose, B.K.

A neural-network-based implementation of space-vector modulation (SVM) of a three-level voltage-fed inverter is proposed in this paper that fully covers the linear undermodulation region. A neural network has the advantage of very fast implementation of an SVM algorithm, particularly when a dedicated application-specific IC chip is used instead of a digital signal processor (DSP). A three-level inverter has a large number of switching states compared to a two-level inverter and, therefore, the SVM algorithm to be implemented in a neural network is considerably more complex. In the proposed scheme, a three-layer feedforward neural network receives the command voltage and angle information at the input and generates symmetrical pulsewidth modulation waves for the three phases with the help of a single timer and simple logic circuits. The artificial-neural-network (ANN)-based modulator distributes switching states such that neutral-point voltage is balanced in an open-loop manner. The frequency and voltage can be varied from zero to full value in the whole undermodulation range. A simulated DSP-based modulator generates the data which are used to train the network by a backpropagation algorithm in the MATLAB Neural Network Toolbox. The performance of an open-loop volts/Hz speed-controlled induction motor drive has been evaluated with the ANN-based modulator and compared with that of a conventional DSP-based modulator, and shows excellent performance. The modulator can be easily applied to a vector-controlled drive, and its performance can be extended to the overmodulation region

Published in:

Industry Applications, IEEE Transactions on  (Volume:38 ,  Issue: 3 )

Date of Publication:

May/Jun 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.