By Topic

A blind multichannel identification algorithm robust to order overestimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Gazzah ; Departement Commun., Images et Traitement de l'Inf., Inst. Nat. des Telecommun. (INT), Evry, France ; P. A. Regalia ; J. -P. Delmas ; K. Abed-Meraim

Active research in blind single input multiple output (SIMO) channel identification has led to a variety of second-order statistics-based algorithms, particularly the subspace (SS) and the linear prediction (LP) approaches. The SS algorithm shows good performance when the channel output is corrupted by noise and available for a finite time duration. However, its performance is subject to exact knowledge of the channel order, which is not guaranteed by current order detection techniques. On the other hand, the linear prediction algorithm is sensitive to observation noise, whereas its robustness to channel order overestimation is not always verified when the channel statistics are estimated. We propose a new second-order statistics-based blind channel identification algorithm that is truly robust to channel order overestimation, i.e., it is able to accurately estimate the channel impulse response from a finite number of noisy channel measurements when the assumed order is arbitrarily greater than the exact channel order. Another interesting feature is that the identification performance can be enhanced by increasing a certain smoothing factor. Moreover, the proposed algorithm proves to clearly outperform the LP algorithm. These facts are justified theoretically and verified through simulations

Published in:

IEEE Transactions on Signal Processing  (Volume:50 ,  Issue: 6 )