By Topic

Ocean acoustic tomography as a data assimilation problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elisseeff, P. ; Dept. of Ocean Eng., MIT, Cambridge, MA, USA ; Schmidt, H. ; Wen Xu

The ocean acoustic tomographic (OAT) approach to sound speed field estimation is generalized to include a variety of sources of information of interest such as an oceanographic model of the sound speed field, direct local sound speed measurements, and a full field acoustic propagation model as well as measurements. The inverse problem is presented as a four-dimensional field estimation problem using a variational approach commonly used in oceanographic data assimilation. The current OAT approach is shown to be a special case of the general framework. The matched-field tomography (MFT) approach is also discussed within this context. A simple implementation of this novel approach is then investigated in the absence of a suitable oceanographic model, and acoustic propagation is accounted for using a standard parabolic equation model. The inverse equations derived are validated numerically through a simple inversion example, and some issues on environmental mismatch and computations are discussed. The developments then provide a basic framework for ongoing data-model melding in acoustically focused oceanographic sampling (AFOS) network

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:27 ,  Issue: 2 )