By Topic

Powering cabled ocean-bottom observatories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harris, D.W. ; Sch. of Ocean & Earth Sci. & Technol., Hawaii Univ., Honolulu, HI, USA ; Duennebier, F.K.

A critical and potentially difficult problem for ocean-bottom observatories is the electrical power sub-system. While huge effort and expense has gone into development of land power grids and ocean communication cable power, the characteristics of ocean-bottom observatories require different strategies. Ocean-bottom observatories terminate on the ocean floor where large variable loads are installed, whereas commercial ocean-bottom cables terminate on land and normally have relatively fixed loads. Design considerations such as whether to use a constant current or constant voltage source, choice of voltage and current levels and cable capacitance and impedance are considered. Ocean-bottom observatory science requirements in the future will demand multiple loads along the cable, cable branches, fault protection and redundancy. The realities of high cable capacitance and the negative dynamic impedance of switching power supplies require that rapid load changes either be anticipated or prevented. Without proper control, rapid changes in load can result in instability and collapse of the power system. The strategy suggested in this paper requires that each load point (or junction box where science experiments will be attached to the system) be "smart" enough to keep load variations within tolerance bounds

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:27 ,  Issue: 2 )