By Topic

Surface-related phase noise in SAW resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dai Enguang ; Dept. of Electron., Peking Univ., Beijing, China

With the advent of nanotechnologies, electronic devices are shrinking in thickness and width to reduce mass and, thereby, increase frequency and speed. Lithographic approaches are capable of creating metal connections with thickness and lateral dimensions down to about 20 nm, approaching the molecular scale. As a result, the dimensions of outer particles are comparable with, or even larger than, those of active or passive regions in electronics devices. Therefore, directing our attention toward the effect of surface fluctuations is of practical significance. In fact, electronic device surface-related phenomena have already received more and more attention as device size decreases. In connection with surface phase noise, selection of a suitable device with high surface sensitivity is important. In this paper, high Q-value surface acoustic wave resonators were employed because of their strong sensitivity to surface perturbation. Phase noise in SAW resonators related to surface particle motion has been examined both theoretically and experimentally. This kind of noise has been studied from the point of view of a stochastic process resulting from particle molecular adsorption and desorption. Experimental results suggest that some volatile vapors can change flicker noise 1/f and random walk noise 1/f/sup 2/. An analysis has been made indicating that these effects are not associated with Q value variation, but are generated by the change in the dynamic rate of adsorption and desorption of surface particles. Research on particle motion above the device substrate might explain the differences observed from the model based only on the substrate itself. Results might lead to a better understanding of the phase noise mechanism in micro-electronic devices and help us to build oscillators with improved performance.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:49 ,  Issue: 5 )