By Topic

A neural network learning strategy for the control of a one-legged hopping machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Helferty, John J. ; Dept. of Electr. Eng., Temple Univ., Philadelphia, PA, USA ; Collins, Joseph B. ; Kam, Moshe

Results are presented on two neural network strategies for the control of dynamic locomotive systems, in particular a one-legged hopping robot. The control task is to make corrections to the motion of the robot that serve to maintain a fixed level of energy (and minimize energy losses), which yields a stable periodic limit cycle in the system's state space. Control of the robot is achieved by the use of artificial neural networks (ANNs) with a continuous learning memory. Through continuous reinforcement for past successes and failures, the control system develops a stable strategy for accomplishing the desired control objectives. The results are presented in the form of computer simulation that demonstrate the ability of two different ANNs to devise proper control signals that will develop a stable hopping strategy, and hence a stable limit cycle in the robot's state space, using imprecise knowledge of both the current state and the mathematical model of the robot leg

Published in:

Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on

Date of Conference:

14-19 May 1989