By Topic

Nonlinear nonstationary Wiener model of infant EEG seizures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Celka ; Signal Process. Res. Centre, Queensland Univ. of Technol., Brisbane, Qld., Australia ; P. Colditz

This paper presents the estimation of a nonstationary nonlinear model of seizures in infants based on parallel Wiener structures. The model comprises two parts and is partly derived from the Roessgen et al. seizure model. The first part consists of a nonlinear Wiener model of the pure background activity, and the second part in a nonlinear Wiener model of the pure seizure activity with a time-varying deterministic input signal. The two parts are then combined in a parallel structure. The Wiener model consists of an autoregressive moving average filter followed by a nonlinear shaping function to take into account the non-Gaussian statistical behavior of the data. Model estimation was performed on 64 infants of whom four showed signs of clinical and electrical seizures. Model validation is performed using time-frequency-based entropy distance and shows an averaged improvement of 50% in modeling performance compared with the Roessgen model.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:49 ,  Issue: 6 )