By Topic

FEM analysis of predicting electrode-myocardium contact from RF cardiac catheter ablation system impedance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cao, Hong ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Speidel, M.A. ; Jang-Zern Tsai ; Van Lysel, M.S.
more authors

We used the finite-element method (FEM) to model and analyze the resistance between the catheter tip electrode and the dispersive electrode during radio-frequency cardiac catheter ablation for the prediction of myocardium-electrode contact. We included deformation of the myocardial surface to achieve accurate modeling. For perpendicular catheter contact, we measured the side view of myocardial deformation using X-ray projection imaging. We averaged the deformation contour from nine samples, and then incorporated the contour information into our FEM model. We measured the resistivity of the bovine myocardium using the four-electrode method, and then calculated the resistance change as the catheter penetrated into the myocardium. The FEM result of resistance versus catheter penetration depth matches well with our experimental data.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 6 )