By Topic

Optimal trajectory planning of robotic manipulators via quasi-linearization and state parametrization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yen, V. ; Carnegie-Mellon Univ., Pittsburgh, PA, USA ; Nagurka, M.

A numerical algorithm has been developed to solve the problem of optimal control of robotic manipulators. A quasi-linearization method is used to convert a nonlinear optimal control problem into a sequence of LQ (linear quadratic) problems, which are solved by an efficient Fourier-based state parameterization approach. The update laws for the nominal trajectory ensure satisfaction of the terminal conditions. In contrast to dynamic-programming-based methods, the proposed approach does not demand extensive computer storage requirements and thus is capable of achieving optimality without limiting the degrees of freedom of the trajectory. Compared to nonlinear-programming-based methods, the approach offers significant advantages in computational efficiency. Compared to calculus-of-variations-based methods, the approach eliminates the requirement of solving a two-point boundary-value problem and therefore is more robust and efficient

Published in:

Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on

Date of Conference:

14-19 May 1989