Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Structure decision method for self organising robots based on cell structures-CEBOT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fukuda, T. ; Dept. of Mech. Eng., Sci. Tokyo Univ., Japan ; Nakagawa, S. ; Kawauchi, Y. ; Buss, M.

A dynamically reconfigurable robotic system (DRRS) is one that can reconfigure itself to an optimal structure, depending on the purpose and environment. To realize this concept, the authors propose CEBOT (cell structured robot), which is a distributed robotic system consisting of separable autonomous units. These functional cells are able to communicate with each other and to approach, connect, and separate automatically. If single cells of CEBOT are damaged, they can be repaired or replaced automatically. Since CEBOT is capable of adapting itself to changing environments, it is a very flexible system applicable in space, factory, and hostile environments. The authors propose an optimal structure decision method that can determine cell type, arrangement, degree of freedom, and link length. It is applicable to fixed-base and mobile-base manipulators. A structure evaluation function, which is the sum of parameters relating to the number of work points, required positioning accuracy, torque, distance between given work points, and cell cost, is presented. Simulation results are given

Published in:

Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on

Date of Conference:

14-19 May 1989