Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A distance-based approach to entity reconciliation in heterogeneous databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dey, D. ; Dept. of Manage. Sci., Washington Univ., Seattle, WA, USA ; Sarkar, S. ; De, P.

In modern organizations, decision makers must often be able to quickly access information from diverse sources in order to make timely decisions. A critical problem facing many such organizations is the inability to easily reconcile the information contained in heterogeneous data sources. To overcome this limitation, an organization must resolve several types of heterogeneity problems that may exist across different sources. We examine one such problem called the entity heterogeneity problem, which arises when the same real-world entity type is represented using different identifiers in different applications. A decision-theoretic model to resolve the problem is proposed. Our model uses a distance measure to express the similarity between two entity instances. We have implemented the model and tested it on real-world data. The results indicate that the model performs quite well in terms of its ability to predict whether two entity instances should be matched or not. The model is shown to be computationally efficient. It also scales well to large relations from the perspective of the accuracy of prediction. Overall, the test results imply that this is certainly a viable approach in practical situations

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 3 )