Cart (Loading....) | Create Account
Close category search window
 

Delay-Doppler analysis of bistatically reflected signals from the ocean surface: theory and application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elfouhaily, T. ; Inst. de Recherche sur les Phenomenes Hors Equilibre, Centre Nat. de la Recherche Scientifique, Marseille, France ; Thompson, D.R. ; Linstrom, L.

We present a new stochastic theory for delay-Doppler mapping of the ocean surface for bistatic scattering. This stochastic theory should complement nicely the previous theories for the Global Positioning System (GPS) reflected signals from ocean surfaces, especially that of Zavorotny and Voronovich (2000). We quantify the Doppler spread of the reflected signal before interpreting the delay. Our theoretical results compare very well to Doppler spectra computed using data collected during an airborne campaign. The bandwidth of the spectra is linked to the geometry and to the ocean roughness. The bulk of the Doppler spread is caused by the rms slope and not by the surface orbital velocity. Our stochastic theory is generalized to include the delay mapping made possible by the existence of the pseudorandom noise code on the GPS L-band carrier. These results can be seen as a generalization of Woodward's theorem for FM signals to delay-Doppler analysis of more complicated signals. Our formulation is amenable to inversion for the determination of geophysical parameters such as surface wind vector and mean sea level. Another novelty in our approach is the inclusion of the sea state

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 3 )

Date of Publication:

Mar 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.