By Topic

A pseudoinverse-based iterative learning control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghosh, J. ; California Univ., Santa Barbara, CA, USA ; Paden, B.

Learning control is a very effective approach for tracking control in processes occurring repetitively over a fixed interval of time. In this paper, an iterative learning control (ILC) algorithm is proposed to accommodate a general class of nonlinear, nonminimum-phase plants with disturbances and initialization errors. The algorithm requires the computation of an approximate inverse of the linearized plant rather than the exact inverse. An advantage of this approach is that the output of the plant need not be differentiated. A bound on the asymptotic trajectory error is exhibited via a concise proof and is shown to grow continuously with a bound on the disturbances. The structure of the controller is such that the low frequency components of the trajectory converge faster than the high frequency components

Published in:

Automatic Control, IEEE Transactions on  (Volume:47 ,  Issue: 5 )