By Topic

Discretization of the radon transform and of its inverse by spline convolutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Horbelt ; Biomed. Imaging Group, Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; M. Liebling ; M. Unser

We present an explicit formula for B-spline convolution kernels; these are defined as the convolution of several B-splines of variable widths h i and degrees n i. We apply our results to derive spline-convolution-based algorithms for two closely related problems: the computation of the Radon transform and of its inverse. First, we present an efficient discrete implementation of the Radon transform that is optimal in the least-squares sense. We then consider the reverse problem and introduce a new spline-convolution version of the filtered back-projection algorithm for tomographic reconstruction. In both cases, our explicit kernel formula allows for the use of high-degree splines; these offer better approximation performance than the conventional lower-degree formulations (e.g., piecewise constant or piecewise linear models). We present multiple experiments to validate our approach and to find the parameters that give the best tradeoff between image quality and computational complexity. In particular, we find that it can be computationally more efficient to increase the approximation degree than to increase the sampling rate.

Published in:

IEEE Transactions on Medical Imaging  (Volume:21 ,  Issue: 4 )