By Topic

Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dippel, S. ; Div. Tech. Syst., Philips Res. Lab., Hamburg, Germany ; Stahl, M. ; Wiemker, R. ; Blaffert, T.

Contrast enhancement of radiographies based on a multiscale decomposition of the images recently has proven to be a far more versatile and efficient method than regular unsharp-masking techniques, while containing these as a subset. In this paper, we compare the performance of two multiscale-methods, namely the Laplacian Pyramid and the fast wavelet transform (FWT). We find that enhancement based on the FWT suffers from one serious drawback-the introduction of visible artifacts when large structures are enhanced strongly. By contrast, the Laplacian Pyramid allows a smooth enhancement of large structures, such that visible artifacts can be avoided. Only for the enhancement of very small details, for denoising applications or compression of images, the FWT may have some advantages over the Laplacian Pyramid.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:21 ,  Issue: 4 )