By Topic

Neural-network approximation of piecewise continuous functions: application to friction compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. R. Selmic ; Signalogic Inc., Dallas, TX, USA ; F. L. Lewis

One of the most important properties of neural nets (NNs) for control purposes is the universal approximation property. Unfortunately,, this property is generally proven for continuous functions. In most real industrial control systems there are nonsmooth functions (e.g., piecewise continuous) for which approximation results in the literature are sparse. Examples include friction, deadzone, backlash, and so on. It is found that attempts to approximate piecewise continuous functions using smooth activation functions require many NN nodes and many training iterations, and still do not yield very good results. Therefore, a novel neural-network structure is given for approximation of piecewise continuous functions of the sort that appear in friction, deadzone, backlash, and other motion control actuator nonlinearities. The novel NN consists of neurons having standard sigmoid activation functions, plus some additional neurons having a special class of nonsmooth activation functions termed "jump approximation basis function." Two types of nonsmooth jump approximation basis functions are determined- a polynomial-like basis and a sigmoid-like basis. This modified NN with additional neurons having "jump approximation" activation functions can approximate any piecewise continuous function with discontinuities at a finite number of known points. Applications of the new NN structure are made to rigid-link robotic systems with friction nonlinearities. Friction is a nonlinear effect that can limit the performance of industrial control systems; it occurs in all mechanical systems and therefore is unavoidable in control systems. It can cause tracking errors, limit cycles, and other undesirable effects. Often, inexact friction compensation is used with standard adaptive techniques that require models that are linear in the unknown parameters. It is shown here how a certain class of augmented NN, capable of approximating piecewise continuous functions, can be used for friction compensation

Published in:

IEEE Transactions on Neural Networks  (Volume:13 ,  Issue: 3 )