Cart (Loading....) | Create Account
Close category search window
 

Subsethood-product fuzzy neural inference system (SuPFuNIS)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paul, S. ; Dept. of Electr. Eng., Dayalbagh Educ. Inst., Agra, India ; Kumar, S.

A new subsethood-product fuzzy neural inference system (SuPFuNIS) is presented in this paper. It has the flexibility to handle both numeric and linguistic inputs simultaneously. Numeric inputs are fuzzified by input nodes which act as tunable feature fuzzifiers. Rule based knowledge is easily translated directly into a network architecture. Connections in the network are represented by Gaussian fuzzy sets. The novelty of the model lies in a combination of tunable input feature fuzzifiers; fuzzy mutual subsethood-based activation spread in the network; use of the product operator to compute the extent of firing of a rule; and a volume-defuzzification process to produce a numeric output. Supervised gradient descent is employed to train the centers and spreads of individual fuzzy connections. A subsethood-based method for rule generation from the trained network is also suggested. SuPFuNIS can be applied in a variety of application domains. The model has been tested on Mackey-Glass time series prediction, Iris data classification, Hepatitis medical diagnosis, and function approximation benchmark problems. We also use a standard truck backer-upper control problem to demonstrate how expert knowledge can be used to augment the network. The performance of SuPFuNIS compares excellently with other various existing models

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.