By Topic

An equalized error backpropagation algorithm for the on-line training of multilayer perceptrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Martens, J.-P. ; Electron. & Inf. Syst., Ghent Univ., Gent, Belgium ; Weymaere, N.

The error backpropagation (EBP) training of a multilayer perceptron (MLP) may require a very large number of training epochs. Although the training time can usually be reduced considerably by adopting an on-line training paradigm, it can still be excessive when large networks have to be trained on lots of data. In this paper, a new on-line training algorithm is presented. It is called equalized EBP (EEBP), and it offers improved accuracy, speed, and robustness against badly scaled inputs. A major characteristic of EEBP is its utilization of weight specific learning rates whose relative magnitudes are derived from a priori computable properties of the network and the training data

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 3 )