By Topic

Simulations of foot stability during gait characteristic of ankle dorsiflexor weakness in the elderly

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Gefen ; Dept. of Biomed. Eng., Tel Aviv Univ., Israel

Falls are common among the elderly and often cause injuries. They most frequently occur during walking and are associated with the chronic deterioration in neuromuscular and sensory systems, as well as with ankle dorsiflexor muscular weakness and lowered endurance of these muscles to fatigue. In the present study, a three-dimensional (3-D) finite element model of the structure of the foot was utilized to determine the effects of ankle dorsiflexor muscle weakness on the structural stability of the foot and, consequently, on the risk of falls during gait. The medial-lateral tendency of instability of the foot during gait in such conditions of weakness was analyzed by means of this model to identify the most important muscles used in controlling foot stability in affected individuals. The values of the eccentricity of the center of pressure under the heel during foot placement were used to indicate the degree of foot stability. The computational analysis indicated that it is the tibialis anterior muscle's weakness that dramatically decreases foot stability. Clinical investigation is now needed to correlate the significance of tibialis anterior muscle weakness with other known risk factors affecting the tendency to falls among the elderly, e.g., deterioration of sensory abilities. Rehabilitation practitioners and physical therapists may apply the present analytic approach to evaluate the stability of a foot before treatment and compare the predicted with the actual therapeutic results in terms of optimization of foot-ground pressure.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:9 ,  Issue: 4 )