By Topic

Haptic object recognition using a multi-fingered dextrous hand

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The use of a dextrous, multifingered hand for high-level object recognition tasks is considered. The paradigm is model-based recognition in which the objects are modeled and recovered as superquadratics, which are shown to have a number of important attributes that make them well suited for such a task. Experiments have been performed to recover the shape of objects using sparse contacts point data from the hand with promising results. The authors also propose an approach to using tactile data in conjunction with the dextrous hand to build a library of grasping and exploration primitives that can be used in recognizing and grasping more complex multipart objects

Published in:

Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on

Date of Conference:

14-19 May 1989