By Topic

Hybrid heuristic search for the scheduling of flexible manufacturing systems using Petri nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moro, A.R. ; iSOCO Lab., iSOCO, Barcelona, Spain ; Yu, H. ; Kelleher, G.

The combination of Petri nets (PNs) as an analysis tool for discrete-event dynamic systems and artificial intelligence heuristic search has been shown to be a promising way to solve flexible manufacturing systems (FMS) scheduling problems. However, the NP hard nature of the problem obscures the PN capability of reasoning about the behavior of the system. In this paper, two techniques to alleviate this drawback are presented: a systematic method to avoid the generation of futile paths within the search graph and a novel hybrid stage-search algorithm. The new algorithm is based on the application of A* guided by a PN-based heuristic within a limited local search frame. An optimization policy is applied to maintain, under evaluation, only the most promising paths. For each system state, the algorithm is able to decide whether an enabled operation should be applied and to maintain this decision until new information forces reconsideration. This eliminates permutation paths and useless scheduling sequences. Experimental results show that the algorithm's cost does not grow exponentially with the size of the problem. Comparison with previous work is given to show the superiority of our approach and the potential of PN-based heuristic search

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:18 ,  Issue: 2 )