By Topic

Beowulf performance in CFD multigrid applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Garcia, C. ; Dpto. Arquitectura de Computadores y Automatica, Univ. Complutense de Madrid, Spain ; Montero, R.S. ; Prieto, M. ; Llorente, I.M.
more authors

Computational fluid dynamics is probably one of the most computationally demanding disciplines, a driving force behind the development of new computer architectures. In fact, the design and evaluation of high-performance parallel systems is commonly based on CFD workloads. One of the most remarkable examples of such workloads is the NAS parallel benchmark, which aims to mimic the computation and data-movement characteristics of large scale CFD applications. We have paid specific attention to the NAS-MG (multigrid) kernel, since these methods represent one of the most promising solvers in the field of CFD. Nevertheless, practical flow computations demand robust multigrid algorithms which differ from the NAS-MG kernel. The paper presents a performance evaluation of a Beowulf system using both a state-of-the-art multigrid solver and the NAS-MG benchmark. These two codes have been used to compare several of its design choices, namely, the interconnection network (GigaNet versus Fast-Ethernet) as well as the node configuration (dual nodes versus single nodes). The results highlight that the optimal combination strongly depends on the target application

Published in:

Parallel, Distributed and Network-based Processing, 2002. Proceedings. 10th Euromicro Workshop on

Date of Conference: