By Topic

Computational surface flattening: a voxel-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Grossmann, R. ; Comverse, Tel Aviv, Israel ; Kiryati, N. ; Kimmel, R.

A voxel-based method for flattening a surface in 3D space into 2D while best preserving distances is presented. Triangulation or polyhedral approximation of the voxel data are not required. The problem is divided into two main parts: Voxel-based calculation of the minimal geodesic distances between points on the surface and finding a configuration of points in 2D that has Euclidean distances as close as possible to these distances. The method suggested combines an efficient voxel-based hybrid distance estimation method, that takes the continuity of the underlying surface into account, with classical multidimensional scaling (MDS) for finding the 2D point configuration. The proposed algorithm is efficient, simple, and can be applied to surfaces that are not functions. Experimental results are shown

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 4 )