By Topic

Performance-effective and low-complexity task scheduling for heterogeneous computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Topcuoglu, H. ; Comput. Eng. Dept., Marmara Univ., Istanbul, Turkey ; Hariri, S. ; Min-You Wu

Efficient application scheduling is critical for achieving high performance in heterogeneous computing environments. The application scheduling problem has been shown to be NP-complete in general cases as well as in several restricted cases. Because of its key importance, this problem has been extensively studied and various algorithms have been proposed in the literature which are mainly for systems with homogeneous processors. Although there are a few algorithms in the literature for heterogeneous processors, they usually require significantly high scheduling costs and they may not deliver good quality schedules with lower costs. In this paper, we present two novel scheduling algorithms for a bounded number of heterogeneous processors with an objective to simultaneously meet high performance and fast scheduling time, which are called the Heterogeneous Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Processor (CPOP) algorithm. The HEFT algorithm selects the task with the highest upward rank value at each step and assigns the selected task to the processor, which minimizes its earliest finish time with an insertion-based approach. On the other hand, the CPOP algorithm uses the summation of upward and downward rank values for prioritizing tasks. Another difference is in the processor selection phase, which schedules the critical tasks onto the processor that minimizes the total execution time of the critical tasks. In order to provide a robust and unbiased comparison with the related work, a parametric graph generator was designed to generate weighted directed acyclic graphs with various characteristics. The comparison study, based on both randomly generated graphs and the graphs of some real applications, shows that our scheduling algorithms significantly surpass previous approaches in terms of both quality and cost of schedules, which are mainly presented with schedule length ratio, speedup, frequency of best results, and average scheduling time metrics

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 3 )