By Topic

Linear spectral random mixture analysis for hyperspectral imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chein-I Chang ; Dept. of Comput. Sci. and Electrical Engineering, Maryland Univ., Baltimore, MD, USA ; Shao-Shan Chiang ; J. A. Smith ; I. W. Ginsberg

Independent component analysis (ICA) has shown success in blind source separation and channel equalization. Its applications to remotely sensed images have been investigated in recent years. Linear spectral mixture analysis (LSMA) has been widely used for subpixel detection and mixed pixel classification. It models an image pixel as a linear mixture of materials present in an image where the material abundance fractions are assumed to be unknown and nonrandom parameters. This paper considers an application of ICA to the LSMA, referred to as ICA-based linear spectral random mixture analysis (LSRMA), which describes an image pixel as a random source resulting from a random composition of multiple spectral signatures of distinct materials in the image. It differs from the LSMA in that the abundance fractions of the material spectral signatures in the LSRMA are now considered to be unknown but random independent signal sources. Two major advantages result from the LSRMA. First, it does not require prior knowledge of the materials to be used in the linear mixture model, as required for the LSMA. Second, and most importantly, the LSRMA models the abundance fraction of each material spectral signature as an independent random signal source so that the spectral variability of materials can be described by their corresponding abundance fractions and captured more effectively in a stochastic manner

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:40 ,  Issue: 2 )