By Topic

Thermal noise and radiation pressure in MEMS Fabry-Perot tunable filters and lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. S. Tucker ; Agilent Labs., Agilent Technol., Palo Alto, CA, USA ; D. M. Baney ; W. V. Sorin ; C. A. Flory

In this paper, we examine thermal noise and radiation-pressure effects in MEMS tunable Fabry-Perot etalons. We show that thermal noise causes a jitter in the center wavelength in very high finesse etalons. In turn, the jitter causes an effective increase in the time-averaged filter bandwidth. Radiation pressure is of little consequence in conventional Fabry-Perot etalons, but it can give rise to nonlinearities and hysteresis in the tuning response of high-finesse MEMS filters. We develop models of noise and optical nonlinearities and compare the models with a series of measurements on commercial tunable high-finesse MEMS Fabry-Perot etalons

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:8 ,  Issue: 1 )