By Topic

An iterative hillclimbing algorithm for discrete optimization on images: application to joint encoding of image transform coefficients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bunyaratavej, Piya ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Miller, D.J.

We develop an iterative, hillclimbing-based assignment algorithm for the approximate solution of discrete-parameter cost minimization problems defined on the pixel sites of an image. While the method is applicable to a number of problems including encoding, decoding, and segmentation, this article focuses on entropy-constrained encoding. For typical statistical image models, the globally optimal solution requires an intractable exhaustive search, while standard greedy methods, though tractable in computation, may be quite suboptimal. Alternatively, our method is guaranteed to perform no worse (and typically performs significantly better) than greedy encoding, yet with manageable increases in complexity. The new approach uses dynamic programming as a local optimization "step," repeatedly applied to the rows (or columns) of the image, until convergence. For a DCT framework, with entropy-constrained TCQ applied to the coefficient sources, the new method gains as much as 0.8 dB over standard greedy encoding.

Published in:

Signal Processing Letters, IEEE  (Volume:9 ,  Issue: 2 )