By Topic

Characterization of phosphorus and boron heavily doped LPCVD polysilicon films in the temperature range 293-373 K

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Boutchich ; Centre Hyperfrequences et Semicond., Univ. des Sci. et Technol. de Lille Flandres Artois, Villeneuve d'Ascq, France ; K. Ziouche ; P. Godts ; D. Leclercq

In this paper, thermal properties of phosphorus and boron-doped low pressure chemical vapor deposition (LPCVD) polysilicon layers with regard to sensor applications are presented. Thermoelectric coefficient and relative resistance variations of polysilicon are investigated within the temperature range of 293-373 K. Test structures and characterization benches have been developed to obtain measurements with precision of 5%. Ion implantation has been experimented to achieve low electrical resistivities and high Seebeck coefficients. It can be seen that the temperature coefficient of resistance of doped polysilicon is negative, approaches zero, or positive depending on the doping concentration. These results are, to our knowledge, the first reported for such dopant concentrations and are important for design and optimization of high sensitivity thermal sensors using n- and p-doped-LPCVD polysilicon thermopile.

Published in:

IEEE Electron Device Letters  (Volume:23 ,  Issue: 3 )