By Topic

Flood forecasting using radial basis function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang, F.-J. ; Dept. of Bioenvironmental Syst. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jin-Ming Liang ; Yen-Chang Chen

A radial basis function (RBF) neural network (NN) is proposed to develop a rainfall-runoff model for three-hour-ahead flood forecasting. For faster training speed, the RBF NN employs a hybrid two-stage learning scheme. During the first stage, unsupervised learning, fuzzy min-max clustering is introduced to determine the characteristics of the nonlinear RBFs. In the second stage, supervised learning, multivariate linear regression is used to determine the weights between the hidden and output layers. The rainfall-runoff relation can be considered as a linear combination of some nonlinear RBFs. Rainfall and runoff events of the Lanyoung River collected during typhoons are used to train, validate,and test the network. The results show that the RBF NN can be considered a suitable technique for predicting flood flow

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:31 ,  Issue: 4 )