By Topic

A practical architecture for reliable quantum computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oskin, M. ; Washington Univ., Seattle, WA, USA ; Chong, F.T. ; Chuang, I.L.

Quantum computation has advanced to the point where system-level solutions can help close the gap between emerging quantum technologies and real-world computing requirements. Empirical studies of practical quantum architectures are just beginning to appear in the literature. Elementary architectural concepts are still lacking: How do we provide quantum storage, data paths, classical control circuits, parallelism, and system integration? And, crucially, how can we design architectures to reduce error-correction overhead? The authors describe a proposed architecture that uses code teleportation, quantum memory refresh units, dynamic compilation of quantum programs, and scalable error correction to achieve system-level efficiencies. They assert that their work indicates the underlying technology's reliability is crucial; practical architectures will require quantum technologies with error rates between 10-6 and 10-9

Published in:

Computer  (Volume:35 ,  Issue: 1 )