By Topic

Designing networks for selfish users is hard

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Roughgarden, T. ; Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA

We consider a directed network in which every edge possesses a latency function specifying the time needed to traverse the edge given its congestion. Selfish, noncooperative agents constitute the network traffic and wish to travel from a source s to a sink t as quickly as possible. Since the route chosen by one network user affects the congestion (and hence the latency) experienced by others, we model the problem as a noncooperative game. Assuming each agent controls only a negligible portion of the overall traffic, Nash equilibria in this noncooperative game correspond to s-t flows in which all flow paths have equal latency. We give optimal inapproximability results and approximation algorithms for several network design problems of this type. For example, we prove that for networks with n nodes and continuous, nondecreasing latency functions, there is no approximation algorithm for this problem with approximation ratio less than n/2 (unless P = NP). We also prove this hardness result to be best possible by exhibiting an n/2-approximation algorithm. For networks in which the latency of each edge is a linear function of the congestion, we prove that there is no (4/3 - ε)-approximation algorithm for the problem (for any ε > 0, unless P = NP); the existence of a 4/3-approximation algorithm follows easily from existing work, proving this hardness result sharp.

Published in:

Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on

Date of Conference:

8-11 Oct. 2001