By Topic

Fast versions of the Gilbert-Johnson-Keerthi distance algorithm: additional results and comparisons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chong Jin Ong ; Dept. of Mech. Eng., Nat. Univ. of Singapore, Singapore ; Gilbert, E.G.

Considers fast algorithms for computing the Euclidean distance between objects that are modeled by convex polytopes in three-dimensional space. The algorithms, designated by RGJK, are modifications of the Gilbert-Johnson-Keerthi algorithm that follow the scheme originated by Cameron (1997). Each polytope is represented by its vertices and a list of adjacent vertices for each vertex. When the algorithms are appropriately applied to a pair of objects that have small incremental motions, they share the advantage of the closest-feature algorithm introduced by Lin and Canny (1991): computational time is very small and does not depend significantly on the total number of object vertices. However, when the objects contain complex vertices or faces, the time can increase drastically. Reasons for this problem are analyzed and algorithmic fixes for them are given. Other contributions to algorithmic performance include a procedure for reducing computational time in the presence of collisions. Comprehensive numerical experiments illuminate the dependence of computational time on algorithmic details, object complexity, and the size of incremental motions. The experiments include direct comparisons of RGJK with the closest-feature algorithms of Lin and Canny and of Mirtich (1998)

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:17 ,  Issue: 4 )