By Topic

Weak formulation of finite element method using wavelet basis functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho, S.L. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., China ; Shiyou Yang ; Wong, H.C.

This paper details the development of the weak form formulations of finite element type methods using wavelets as basis functions. Such approaches are different from most wavelet based ones that are derived from the strong form. The advantages of the proposed formulation are that there is no need to enforce natural boundary conditions and that the lower order derivatives of the wavelet bases are involved in the connection coefficients. Various approaches to deal with essential boundary and interface conditions are investigated, and algorithms to compute the associated connection coefficients are derived. To validate the proposed method, two numerical examples are described

Published in:

Magnetics, IEEE Transactions on  (Volume:37 ,  Issue: 5 )