By Topic

A low-cost approach towards mixed task and data parallel scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Radulescu, A. ; Fac. of Inf. Technol. & Syst., Delft Univ. of Technol., Netherlands ; van Gemund, A.J.C.

A relatively new trend in parallel programming scheduling is the so-called mixed task and data scheduling. It has been shown that mixing task and data parallelism to solve large computational applications often yields better speedups compared to either applying more task parallelism or pure data parallelism. In this paper we present a new compile-time heuristic, named critical path and allocation (CPA), for scheduling data-parallel task graphs. Designed to have a very low cost, its complexity is much lower compared to existing approaches, such as TSAS, TwoL or CPR, by one order of magnitude or even more. Experimental results based on graphs derived from real problems as well as synthetic graphs, show that the performance loss of CPA relative to the above algorithms does not exceed 50%. These results are also confirmed by performance measurements of two real applications (i.e., complex matrix multiplication and Strassen matrix multiplication) running on a cluster of workstations.

Published in:

Parallel Processing, 2001. International Conference on

Date of Conference:

3-7 Sept. 2001