By Topic

Reversal modes, thermal stability and exchange length in perpendicular recording media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suess, D. ; Inst. of Appl. & Tech. Phys., Tech. Univ. Wien, Austria ; Schrefl, T. ; Fidler, J.

Micromagnetic simulations are performed to investigate the reversal process and the thermal stability of a grain of a typical perpendicular recording media (Co-Cr). The integration of the LLG equation yields that the reversal process changes slowly and steadily from coherent rotation to nucleation with increasing column length. The region between homogeneous rotation and nucleation becomes smaller and is shifted to smaller column lengths if the damping constant is reduced from α=1 to α=0.02. In the weakly damped case very fast switching modes exist if the switching field is only slightly larger than the coercive field. In this small regime the switching time increases with higher switching fields. Using solutions of LLG simulations, energy barriers between the two stable states at zero field are estimated. For column lengths larger than 30 nm the energy barrier for inhomogeneous reversal processes are smaller than for coherent rotation

Published in:

Magnetics, IEEE Transactions on  (Volume:37 ,  Issue: 4 )