By Topic

Neural computation approach for developing a 3D shape reconstruction model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siu-Yueng Cho ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; T. W. S. Chow

The shape from shading problem refers to the well-known fact that most real images usually contain specular components and are affected by unknown reflectivity. In this paper, these limitations are addressed and a new neural-based 3D shape reconstruction model is proposed. The idea behind this approach is to optimize a proper reflectance model by learning the parameters of the proposed neural reflectance model. In order to do this, new neural-based reflectance models are presented. The feedforward neural network (FNN) model is able to generalize the diffuse term, while the RBF model is able to generalize the specular term. A hybrid structure of FNN-based and RBF-based models is also presented because most real surfaces are usually neither Lambertian models nor ideally specular models. Experimental results, including synthetic and real images, are presented to demonstrate the performance of our approach given different specular effects, unknown illuminate conditions, and different noise environments

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 5 )