By Topic

Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xin Jin ; Mobility Solutions Div., CET Technol. Pte. Ltd., Singapore ; D. Srinivasan ; Ruey Long Cheu

This paper proposes a new technique for freeway incident detection using a constructive probabilistic neural network (CPNN). The CPNN incorporates a clustering technique with an automated training process. The work reported in this paper was conducted on Ayer Rajah Expressway (AYE) in Singapore for incident detection model development, and subsequently on I-880 freeway in California, for model adaptation. The model developed achieved incident detection performance of 92% detection rate and 0.81% false alarm rate on AYE, and 91.30% detection rate and 0.27% false alarm rate on I-880 freeway using the proposed adaptation method. In addition to its superior performance, the network pruning method employed facilitated model size reduction by a factor of 11 compared to a conventional probabilistic neural network. A more impressive size reduction by a factor of 50 was achieved after the model was adapted for the new site. The results from this paper suggest that CPNN is a better adaptive classifier for incident detection problem with a changing site traffic environment

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 5 )