By Topic

Control of a class of nonlinear discrete-time systems using multilayer neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
S. Jagannathan ; Dept. of Electr. & Comput. Eng., Texas Univ., San Antonio, TX, USA

A multilayer neural-network (NN) controller is designed to deliver a desired tracking performance for the control of a class of unknown nonlinear systems in discrete time where the system nonlinearities do not satisfy a matching condition. Using the Lyapunov approach, the uniform ultimate boundedness of the tracking error and the NN weight estimates are shown by using a novel weight updates. Further, a rigorous procedure is provided from this analysis to select the NN controller parameters. The resulting structure consists of several NN function approximation inner loops and an outer proportional derivative tracking loop. Simulation results are then carried out to justify the theoretical conclusions. The net result is the design and development of an NN controller for strict-feedback class of nonlinear discrete-time systems

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 5 )