By Topic

Adaptive observer backstepping control using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin-Young Choi ; Dept. of Electr. Eng., Seoul Nat. Univ., South Korea ; Farrell, J.A.

This paper extends the application of neurocontrol approaches to a new class of nonlinear systems diffeomorphic to output feedback nonlinear systems with unmeasured states. A neural-based adaptive observer is introduced for state estimation as well as system identification using only output measurements during online operation. System identification is achieved via the online approximation of a priori unknown functions. The controller is designed using the backstepping control design procedure. Leakage terms in the adaptive laws and nonlinear damping terms in the backstepping controller are introduced to prevent instability from arising due to the inherent approximation error. A primary benefit of the online function approximation is the reduction of approximation errors, which allows reduction of both the observer and controller gains. A semi-global stability analysis for the proposed approach is provided and the feasibility is investigated by an illustrative simulation example

Published in:

Neural Networks, IEEE Transactions on  (Volume:12 ,  Issue: 5 )