By Topic

Parallel hybrid method for SAT that couples genetic algorithms and local search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Folino, G. ; Inst. of Syst., Nat. Res. Council, Italy ; Pizzuti, C. ; Spezzano, G.

A parallel hybrid method for solving the satisfiability (SAT) problem that combines cellular genetic algorithms (GAs) and the random walk SAT (WSAT) strategy of greedy SAT (GSAT) is presented. The method, called cellular genetic WSAT (CGWSAT), uses a cellular GA to perform a global search from a random initial population of candidate solutions and a local selective generation of new strings. The global search is then specialized in local search by adopting the WSAT strategy. A main characteristic of the method is that it indirectly provides a parallel implementation of WSAT when the probability of crossover is set to zero. CGWSAT has been implemented on a Meiko CS-2 parallel machine using a 2D cellular automaton as a parallel computation model. The algorithm has been tested on randomly generated problems and some classes of problems from the DIMACS and SATLIB test set

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:5 ,  Issue: 4 )