By Topic

Dependency preserving probabilistic modeling of switching activity using Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhanja, S. ; Center for Microelectron. Res., Univ. of South Florida, Tampa, FL, USA ; Ranganathan, N.

We propose a new switching probability model for combinational circuits using a logic-induced-directed-acyclic-graph (LIDBG) and prove that such a graph corresponds to a Bayesian network guaranteed to map all the dependencies inherent in the circuit. This switching activity can be estimated by capturing complex dependencies (spatiotemporal and conditional) among signals efficiently by local message-passing based on the Bayesian networks. Switching activity estimation of ISCAS and MCNC circuits with random input streams yield high accuracy (average mean error=0.002) and low computational time (average time=3.93 seconds).

Published in:

Design Automation Conference, 2001. Proceedings

Date of Conference: