By Topic

Position and force control by reaction compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tanner, H.G. ; Dept. of Mech. Eng., Nat. Tech. Univ. of Athens, Greece ; Kyriakopoulos, K.J.

The paper presents a new position/force controller, based on the philosophy of the parallel approach. The controller exploits the reaction compensation action of the inverse dynamics position controller and achieves superior transient performance. It incorporates a velocity dependent damping term. Stability is established and conditions for the control parameters are derived. Performance of the proposed controller is verified through computer simulations.

Published in:

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on  (Volume:4 )

Date of Conference:

2001